Tag Archives: Vincent Pilloni

Mazur’s Program B on Abelian Surfaces

In the book “More mathematical people,” there is an interview with Robin Wilson with the following quote: At the meal I found myself sitting next to Alistair Cooke who was very charming, and absolutely fascinating to listen to. The very … Continue reading

Posted in Mathematics, Travel | Tagged , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Update on Sato-Tate for abelian surfaces

Various people have asked me for an update on the status of the Sato-Tate conjecture for abelian surfaces in light of recent advances in modularity lifting theorems. My student Noah Taylor has exactly been undertaking this task, and this post … Continue reading

Posted in Mathematics, Students | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , | 3 Comments

Mazur 80

Last week I was in Cambridge for Barry’s 80th birthday conference. If you are wondering why it took so long for Barry to get a birthday conference, that’s probably because you didn’t know that there was *also* a 60th birthday … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 17 Comments

The paramodular conjecture is false for trivial reasons

(This is part of a series of occasional posts discussing results and observations in my joint paper with Boxer, Gee, and Pilloni mentioned here.) Brumer and Kramer made a conjecture positing a bijection between isogeny classes of abelian surfaces \(A/\mathbf{Q}\) … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , | 7 Comments

Abelian Surfaces are Potentially Modular

Today I wanted (in the spirit of this post) to report on some new work in progress with George Boxer, Toby Gee, and Vincent Pilloni. Edit: The paper is now available here. Recal that, for a smooth projective variety X … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 12 Comments