Tag Archives: Mark Kisin

Unramified Fontaine-Mazur for representations coming from abelian varieties

Mark Kisin gave a talk at the number theory seminar last week where the following problem arose: Let \(W\) be the Galois representation associated to the Tate module of an abelian variety \(A\) over a number field, and suppose that … Continue reading

Posted in Mathematics | Tagged , | 4 Comments

The horizontal Breuil-Mezard conjecture

Postdoc hiring season will be upon us soon! I have two excellent graduate students who will be applying for academic jobs soon, Chengyang Bao and Andreea Iorga. I have mentioned Chengyang’s first project before here and an introduction to the … Continue reading

Posted in Mathematics, Students, Work of my students | Tagged , , , , , , , , , , , , , , , , , | Leave a comment

En Passant VI

I just learnt (from a comment on this blog) that Pierre Colmez hosts a wonderful page on Fontaine and Wintenberger here. I particularly recommend reading both the personal recollections of their friends and collaborators (sample quote from Mark: These \(p\)-adic … Continue reading

Posted in Mathematics | Tagged , , , , , , | Leave a comment

More or less OPAQUE

I recently talked with Lynnelle Ye (a soon to be graduating student of Mark Kisin) for a few hours about her thesis and related mathematics. In her thesis, she generalizes (in part) the work Liu-Wan-Xiao on the boundary (halo) of … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , | 3 Comments

New Results in Modularity, Part II

This is part two of series on work in progress with Patrick Allen, Ana Caraiani, Toby Gee, David Helm, Bao Le Hung, James Newton, Peter Scholze, Richard Taylor, and Jack Thorne. Click here for Part I It has been almost … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 7 Comments

Is Serre’s conjecture still open?

The conjecture in this paper has indeed been proven. But that isn’t the entire story. Serre was fully aware of Katz modular forms of weight one. However, Serre was too timid was prudently conservative and made his conjecture only for … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , | Leave a comment

Local crystalline deformation rings

I just returned from a very pleasant conference in Puerto Rico courtesy of the Simons Foundation (general advice: if you live in Chicago, always accept invitations to conferences in January). One thing I learnt from Toby Gee was the following … Continue reading

Posted in Mathematics | Tagged , , , , | Leave a comment