Tag Archives: John Tate

SL_n versus GL_n

I recently wrote a paper (with Toby Gee and George Boxer, see also here) on constructing regular algebraic automorphic representations \(\pi\) of (cohomological) weight zero and level one, and therefore also cuspidal cohomology classes in the cohomology of \(\mathrm{GL}_n(\mathbf{Z})\) for … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

30 years of modularity: number theory since the proof of Fermat

It’s probably fair to say that the target audience for this blog is close to orthogonal to the target audience for my talk, but just in case anyone wants to watch it in HD (and with the audio synced to … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | 13 Comments

The last seven words of Kedlaya-Medvedovsky

New paper by my student Noah Taylor! It addresses some conjectures raised by Kedlaya and Medvedovsky in this paper. Let \(\mathbf{T}\) denote the Hecke algebra acting on modular forms of weight two and prime level \(N\) generated by Hecke operators … Continue reading

Posted in Mathematics, Music, Students | Tagged , , , , , , , , , , , , , , | 3 Comments

En Passant VI

I just learnt (from a comment on this blog) that Pierre Colmez hosts a wonderful page on Fontaine and Wintenberger here. I particularly recommend reading both the personal recollections of their friends and collaborators (sample quote from Mark: These \(p\)-adic … Continue reading

Posted in Mathematics | Tagged , , , , , , | Leave a comment