Tag Archives: Dick Gross

Dembélé on Abelian Surfaces with good reduction everywhere

New paper by Dembélé (friend of the blog) on abelian surfaces with good reduction everywhere (or rather, the lack of them for many real quadratic fields of small discriminant). I have nothing profound to say about the question of which … Continue reading

Posted in Mathematics | Tagged , , , , , , , , | 4 Comments

Mazur 80

Last week I was in Cambridge for Barry’s 80th birthday conference. If you are wondering why it took so long for Barry to get a birthday conference, that’s probably because you didn’t know that there was *also* a 60th birthday … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 17 Comments

Abandonware

For a young mathematician, there is a lot of pressure to publish (or perish). The role of for-profit academic publishing is to publish large amounts of crappy mathematics papers, make a lot of money, but at least in return grant … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , , , , | 4 Comments

How not to be wrong

I recently finished listening to Jordan’s book “how not to be wrong,” and thought that I would record some of the notes I made. Unlike other reviews, Persiflage will cut through to the key aspects of the book which perhaps … Continue reading

Posted in Book Review | Tagged , , , , , , , , , , , , , , , , | Leave a comment

Abelian Spiders

This is a blog post about the thesis of my student Zoey Guo, who is graduating this year. (For a blog post on the thesis of my other student graduating this year, see this.) Let \(\Phi\) be a finite graph. … Continue reading

Posted in Mathematics, Students | Tagged , , , , , , , , | Leave a comment

Mysterious Formulae

I’m not one of those mathematicians who is in love with abstraction for its own sake (not that there’s anything wrong with that). I can still be seduced by an explicit example, or even — quell horreur — a definite … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , | Leave a comment

The Artin conjecture is rubbish

Let \(\rho: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_N(\mathbf{C})\) be a continuous irreducible representation. Artin conjectured that the L-function \(L(\rho,s)\) is analytically continues to an entire function on \(\mathbf{C}\) (except for the trivial representation where the is a simple pole at one) and satisfies … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , | Leave a comment

Is Serre’s conjecture still open?

The conjecture in this paper has indeed been proven. But that isn’t the entire story. Serre was fully aware of Katz modular forms of weight one. However, Serre was too timid was prudently conservative and made his conjecture only for … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , | Leave a comment

Gross Fugue

Here are some variations on the theme of the last post, which is also related to a problem of Dick Gross. In this post, I want to discuss weight one modular forms where the level varies in the “vertical” aspect … Continue reading

Posted in Mathematics | Tagged , , , , , | Leave a comment

Abelian Varieties

Jerry Wang gave a nice talk this week on his generalization of Manjul’s work on pointless hyperelliptic curves to hyperelliptic curves with no points over any field of odd degree (equivalently, \(\mathrm{Pic}^1\) is pointless). This work (link here) is joint … Continue reading

Posted in Mathematics | Tagged , , , , , | Leave a comment