Tag Archives: Binary Quadratic Forms

The eigencurve is (still) proper

Although I don’t think about it so much anymore, the eigencurve of Coleman-Mazur was certainly one of my first loves. I can’t quite say I learnt about \(p\)-adic modular forms at my mother’s knee, but I did spend a formative … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , | 1 Comment

Who proved it first?

During Joel Specter’s thesis defense, he started out by remarking that the \(q\)-expansion: \(\displaystyle{f = q \prod_{n=1}^{\infty} (1 – q^n)(1 – q^{23 n}) = \sum a_n q^n}\) is a weight one modular forms of level \(\Gamma_1(23),\) and moreover, for \(p\) … Continue reading

Posted in Mathematics | Tagged , , , , , , , , , , , , , , | 2 Comments