-
Recent Posts
- Giving a good mathematics talk
- The Arthurian Legend
- Walter Neumann
- Am I taking students?
- Not quite what I meant
- Persiflage, 2012-2024
- SL_n versus GL_n
- A talk on my new work with Vesselin Dimitrov and Yunqing Tang on irrationality
- Zeilberger + ChatGPT
- Unramified Fontaine-Mazur for representations coming from abelian varieties
Recent Comments
- Kevin Buzzard on The Arthurian Legend
- DH on The Arthurian Legend
- Kevin Buzzard on The Arthurian Legend
- Toy Fan on Giving a good mathematics talk
- Lior Silberman on The Arthurian Legend
Blogroll
Categories
Tags
- Akshay Venkatesh
- Ana Caraiani
- Andrew Wiles
- Bach
- Bao Le Hung
- Barry Mazur
- Beethoven
- Class Field Theory
- Coffee
- completed cohomology
- David Geraghty
- David Helm
- Dick Gross
- Galois Representations
- Gauss
- George Boxer
- Gowers
- Grothendieck
- Hilbert modular forms
- Inverse Galois Problem
- Jack Thorne
- James Newton
- Joel Specter
- John Voight
- Jordan Ellenberg
- Kevin Buzzard
- Langlands
- Laurent Clozel
- Mark Kisin
- Matthew Emerton
- Michael Harris
- modular forms
- Patrick Allen
- Peter Scholze
- Richard Moy
- Richard Taylor
- RLT
- Robert Coleman
- Ruochuan Liu
- Serre
- Shiva Chidambaram
- The Hawk
- Toby Gee
- torsion
- Vincent Pilloni
Archives
- November 2024 (1)
- October 2024 (1)
- September 2024 (2)
- August 2024 (1)
- July 2024 (2)
- June 2024 (2)
- May 2024 (1)
- February 2024 (1)
- October 2023 (2)
- September 2023 (2)
- June 2023 (2)
- May 2023 (2)
- April 2023 (1)
- March 2023 (1)
- February 2023 (4)
- November 2022 (2)
- July 2022 (2)
- June 2022 (2)
- April 2022 (3)
- March 2022 (1)
- February 2022 (1)
- January 2022 (1)
- December 2021 (1)
- November 2021 (1)
- August 2021 (2)
- June 2021 (1)
- April 2021 (2)
- March 2021 (2)
- February 2021 (2)
- November 2020 (2)
- October 2020 (3)
- June 2020 (2)
- May 2020 (2)
- April 2020 (5)
- March 2020 (8)
- February 2020 (2)
- January 2020 (3)
- December 2019 (2)
- November 2019 (1)
- October 2019 (4)
- September 2019 (4)
- August 2019 (3)
- July 2019 (2)
- June 2019 (2)
- May 2019 (1)
- April 2019 (2)
- March 2019 (3)
- February 2019 (1)
- January 2019 (5)
- December 2018 (3)
- November 2018 (2)
- October 2018 (3)
- September 2018 (1)
- August 2018 (2)
- July 2018 (1)
- June 2018 (3)
- May 2018 (2)
- April 2018 (2)
- March 2018 (1)
- February 2018 (2)
- January 2018 (3)
- December 2017 (2)
- November 2017 (3)
- October 2017 (4)
- September 2017 (2)
- August 2017 (1)
- July 2017 (2)
- June 2017 (4)
- May 2017 (1)
- April 2017 (3)
- March 2017 (5)
- February 2017 (2)
- January 2017 (2)
- December 2016 (3)
- November 2016 (2)
- October 2016 (3)
- August 2016 (1)
- June 2016 (1)
- May 2016 (3)
- April 2016 (1)
- March 2016 (4)
- October 2015 (1)
- September 2015 (1)
- August 2015 (1)
- July 2015 (1)
- June 2015 (3)
- May 2015 (3)
- April 2015 (2)
- March 2015 (3)
- February 2015 (1)
- January 2015 (5)
- December 2014 (2)
- November 2014 (2)
- October 2014 (2)
- September 2014 (6)
- August 2014 (7)
- July 2014 (5)
- June 2014 (3)
- May 2014 (5)
- April 2014 (3)
- March 2014 (3)
- February 2014 (2)
- January 2014 (2)
- December 2013 (1)
- November 2013 (2)
- October 2013 (5)
- September 2013 (3)
- August 2013 (2)
- July 2013 (3)
- June 2013 (7)
- May 2013 (9)
- April 2013 (5)
- March 2013 (3)
- February 2013 (2)
- January 2013 (6)
- December 2012 (6)
- November 2012 (4)
- October 2012 (11)
Meta
Author Archives: Persiflage
Virtual Congruence Betti Numbers
Suppose that \(G\) is a real semisimple group and that \(X = \Gamma \backslash G/K\) is a compact arithmetic locally symmetric space. Let us call a cohomology class tautological if it is invariant under the group \(G\). For example, if … Continue reading
Life on the modular curve
Alice and Bob live on the modular curve \(X_0(1) = \mathbf{H}/\mathrm{PSL}_2(\mathbb{Z})\). What does the world look like to them, assuming that they view the world in hyperbolic perspective? To those who are not used to hyperbolic geometry, there may be … Continue reading
Posted in Mathematics
Tagged 80s, Computer Games, Hyperbolic Space, Jasmine Powell, Justin Ahn, Modular Curve, Wonky
Leave a comment
Parenthood
Some questions, I guess, one can’t be prepared for:
En Passant III
Question: When you are sick in bed, can you do any mathematics? I just spent the past few weeks with a sinus infection and was completely unable to do anything productive, that is, apart from writing an NSF grant (which … Continue reading
Posted in Mathematics, Waffle
Tagged Akshay Venkatesh, Bilu, Bringmann, Dave Roberts, Harald Helfgott, Parent, Puzzle, QI, Rebolledo, Samir Siksek, Sickness, Zagier
Leave a comment
The Fundamental Curve of p-adic Hodge Theory, Part II
This is a second post from JW, following on from Part I. The Galois group of \(\mathbb{Q}_p\) as a geometric fundamental group. In this follow-up post, I’d like to relay something Peter Scholze told me last fall. It concerns the … Continue reading
Posted in Mathematics, Uncategorized
Tagged Jared Weinstein, Perfectoid Spaces, Peter Scholze, Tilting
Leave a comment
The Fundamental Curve of p-adic Hodge Theory, or How to Un-tilt a Tilted Field
As Quomodocumque once said concerning the most recent set of courses at Arizona Winter School, “Jared Weinstein [gives] a great lecture.” On that note, I am delighted to welcome our first guest post, by the man himself. Note that it … Continue reading
Posted in Mathematics
Tagged Fargues, Fontaine, Fundamental Curve, Guest Post, Perfectoid Space, Tilting
12 Comments
Gerookte paling op de Albert Cuypmarkt
My mother grew up in, as she would affectionately say, the rat infested slums of Amsterdam (complete with tales of giant rats crawling inside the toilet bowl and sleeping two to a bed). I finally had the chance to visit … Continue reading
Effective Motives
This is a brief follow up concerning a question asked by Felipe. Suppose we assume the standard conjectures. Let \(M\) be a pure motive, and consider the following problems: Problem A: (“effectivity”) Suppose that \(M\) has non-negative Hodge-Tate weights. Then … Continue reading
Posted in Mathematics
Tagged Deligne, Farbster, Grothendieck, Motives, Standard Conjectures
Leave a comment
Scholze on Torsion, Part IV
This is a continuation of Part I, Part II, and Part III. I was planning to start talking about Chapter IV, instead, this will be a very soft introduction to a few lines on page 72. At this point, we … Continue reading
Scholze on Torsion, Part III
This is a continuation of Part I and Part II. Before I continue along to section V.3, I want to discuss an approach to the problem of constructing Galois representations from the pre-Scholze days. Let’s continue with the same notation … Continue reading
Posted in Mathematics
Tagged Galois Representations, Langlands, Peter Scholze, torsion, Vaporware
Leave a comment