-
Recent Posts
- Giving a good mathematics talk
- The Arthurian Legend
- Walter Neumann
- Am I taking students?
- Not quite what I meant
- Persiflage, 2012-2024
- SL_n versus GL_n
- A talk on my new work with Vesselin Dimitrov and Yunqing Tang on irrationality
- Zeilberger + ChatGPT
- Unramified Fontaine-Mazur for representations coming from abelian varieties
Recent Comments
- Kevin Buzzard on The Arthurian Legend
- DH on The Arthurian Legend
- Kevin Buzzard on The Arthurian Legend
- Toy Fan on Giving a good mathematics talk
- Lior Silberman on The Arthurian Legend
Blogroll
Categories
Tags
- Akshay Venkatesh
- Ana Caraiani
- Andrew Wiles
- Bach
- Bao Le Hung
- Barry Mazur
- Beethoven
- Class Field Theory
- Coffee
- completed cohomology
- David Geraghty
- David Helm
- Dick Gross
- Galois Representations
- Gauss
- George Boxer
- Gowers
- Grothendieck
- Hilbert modular forms
- Inverse Galois Problem
- Jack Thorne
- James Newton
- Joel Specter
- John Voight
- Jordan Ellenberg
- Kevin Buzzard
- Langlands
- Laurent Clozel
- Mark Kisin
- Matthew Emerton
- Michael Harris
- modular forms
- Patrick Allen
- Peter Scholze
- Richard Moy
- Richard Taylor
- RLT
- Robert Coleman
- Ruochuan Liu
- Serre
- Shiva Chidambaram
- The Hawk
- Toby Gee
- torsion
- Vincent Pilloni
Archives
- November 2024 (1)
- October 2024 (1)
- September 2024 (2)
- August 2024 (1)
- July 2024 (2)
- June 2024 (2)
- May 2024 (1)
- February 2024 (1)
- October 2023 (2)
- September 2023 (2)
- June 2023 (2)
- May 2023 (2)
- April 2023 (1)
- March 2023 (1)
- February 2023 (4)
- November 2022 (2)
- July 2022 (2)
- June 2022 (2)
- April 2022 (3)
- March 2022 (1)
- February 2022 (1)
- January 2022 (1)
- December 2021 (1)
- November 2021 (1)
- August 2021 (2)
- June 2021 (1)
- April 2021 (2)
- March 2021 (2)
- February 2021 (2)
- November 2020 (2)
- October 2020 (3)
- June 2020 (2)
- May 2020 (2)
- April 2020 (5)
- March 2020 (8)
- February 2020 (2)
- January 2020 (3)
- December 2019 (2)
- November 2019 (1)
- October 2019 (4)
- September 2019 (4)
- August 2019 (3)
- July 2019 (2)
- June 2019 (2)
- May 2019 (1)
- April 2019 (2)
- March 2019 (3)
- February 2019 (1)
- January 2019 (5)
- December 2018 (3)
- November 2018 (2)
- October 2018 (3)
- September 2018 (1)
- August 2018 (2)
- July 2018 (1)
- June 2018 (3)
- May 2018 (2)
- April 2018 (2)
- March 2018 (1)
- February 2018 (2)
- January 2018 (3)
- December 2017 (2)
- November 2017 (3)
- October 2017 (4)
- September 2017 (2)
- August 2017 (1)
- July 2017 (2)
- June 2017 (4)
- May 2017 (1)
- April 2017 (3)
- March 2017 (5)
- February 2017 (2)
- January 2017 (2)
- December 2016 (3)
- November 2016 (2)
- October 2016 (3)
- August 2016 (1)
- June 2016 (1)
- May 2016 (3)
- April 2016 (1)
- March 2016 (4)
- October 2015 (1)
- September 2015 (1)
- August 2015 (1)
- July 2015 (1)
- June 2015 (3)
- May 2015 (3)
- April 2015 (2)
- March 2015 (3)
- February 2015 (1)
- January 2015 (5)
- December 2014 (2)
- November 2014 (2)
- October 2014 (2)
- September 2014 (6)
- August 2014 (7)
- July 2014 (5)
- June 2014 (3)
- May 2014 (5)
- April 2014 (3)
- March 2014 (3)
- February 2014 (2)
- January 2014 (2)
- December 2013 (1)
- November 2013 (2)
- October 2013 (5)
- September 2013 (3)
- August 2013 (2)
- July 2013 (3)
- June 2013 (7)
- May 2013 (9)
- April 2013 (5)
- March 2013 (3)
- February 2013 (2)
- January 2013 (6)
- December 2012 (6)
- November 2012 (4)
- October 2012 (11)
Meta
Monthly Archives: September 2014
Applying for an NSF grant
It’s not easy to write a good grant proposal. But it can be even harder to write one for the first time, especially if you’re not quite sure who will be reading your proposal. So today, I want to say … Continue reading
The nearly ordinary deformation ring is (usually) torsion over weight space
Let \(F/{\mathbf{Q}}\) be an arbitrary number field. Let \(p\) be a prime which splits completely in \(F\), and consider an absolutely irreducible representation: \(\rho: G_{F} \rightarrow {\mathrm{GL}}_2({\overline{\mathbf{Q}}}_p)\) which is unramified outside finitely many primes. If one assumes that \(\rho\) is … Continue reading
Tricky Fingers
How is one supposed to play this exactly? One can neither can play a 14th in the right hand (my hands are not that big) nor play legato parallel 10ths in the left; hence some sort of arpeggiation is required. … Continue reading
The Artin conjecture is rubbish
Let \(\rho: G_{\mathbf{Q}} \rightarrow \mathrm{GL}_N(\mathbf{C})\) be a continuous irreducible representation. Artin conjectured that the L-function \(L(\rho,s)\) is analytically continues to an entire function on \(\mathbf{C}\) (except for the trivial representation where the is a simple pole at one) and satisfies … Continue reading
Posted in Mathematics
Tagged Andrew Booker, Artin, Cebotarev Density Theorem, Class Number Problem, Dick Gross, Goldfeld, GRH, Jo Dwyer, Langlands, Rubbish, Springer, Stark, Zagier
Leave a comment
K_2(O_F) for number fields F
Belabas and Gangl have a nice paper ( Generators and relations for \(K_2({\mathcal{O}}_F)\), which can be found here) where they compute \(K_2({\mathcal{O}}_E)\) for a large number of quadratic fields \(E\). There main result is a method for proving upper bounds … Continue reading
Posted in Mathematics
Tagged Alexander Rahm, Aurel Page, Banaszak, Belabas, Bloch, Borel, Brownkin, Chern class map, Euler System, Gangl, Higher Regulators, Hutchinson, K-theory, magma, pari, Popescu, Soule, Stark, Tricky Computation, Zagier
Leave a comment
Intermezzo
Scholze is giving a course at Berkeley! Follow Jared Weinstein’s lecture notes from the course here. I believe that the lectures are also being recorded and will be available approximately one week after each lecture; I will add a link … Continue reading
Posted in Waffle
Tagged Bourbaki, Chablis, Colloquia, Gowers, Jared Weinstein, Peter Scholze, Sowa, Suslin
Leave a comment